
IPv4(3) User Contributed Perl Documentation IPv4(3)

NAME
IPTables::IPv4 − Perl module for manipulating iptables rules for the IPv4 protocol

SYNOPSIS
use IPTables::IPv4;

$table = IPTables::IPv4::init(’tablename’);

%IPTables::IPv4 = (
filter => {

INPUT => {
rules => [

{
source => ’10.0.0.0/8’,
jump => ’ACCEPT’

}
],

pcnt => 50000,
bcnt => 1000000,
policy => ’DROP’

}
}

);

DESCRIPTION
This package provides a nice interface to the IP Tables control API that fairly closely parallels the C API
exported in libiptc for manipulating firewalling and forwarding rules for IPv4 packets. Also, a tied multi-
layer data structure has been built, allowing the tables, chains, rules and fields to be manipulated in a more
natural fashion.

Wrappers have been implemented for all methods except one (iptc_check_packet()), and according
to Harald Welte and Rusty Russell, the unimplemented call will likely remain so. Protocol-specific match
modules have been implemented for TCP, UDP and ICMP. Sev eral target and non-protocol match modules
have been implemented.

METHODS
Most methods will return 1 for success, or 0 for failure (and on failure, set $! to a string describing the rea-
son for the failure). Unless otherwise noted, you can assume that all methods will use this convention.

Initialization

$table = IPTables::IPv4::init(’tablename’)
This sets up the connection to the kernel-level netfilter subsystem. tablename corresponds to the
name of a table (filter, nat, mangle, or dropped) to manipulate. The call returns an object of
type IPTables::IPv4::Table, which all the other methods are to be called against, if the named table
exists. If it does not exist, undef will be returned.

Chain Operations

$is_builtin = $table−>builtin(’chainname’)
This checks if the chain chainname is built into the current table. The method will return 1 if
chainname is a built-in chain, or 0 if it is not.

$success = $table−>create_chain(’chainname’)
This attempts to create the chain chainname.

$success = $table−>delete_chain(’chainname’)
This attempts to delete the chain chainname.

perl v5.8.0 2002-11-26 1

IPv4(3) User Contributed Perl Documentation IPv4(3)

($policy, $pcnt, $bcnt) = $table−>get_policy(’chainname’)
This returns an array containing the default policy, and the number of packets and bytes which have
reached the default policy, in the chain chainname. If chainname does not exist, or if it is not a
built-in chain, an empty array will be returned, and $! will be set to a string containing the reason.

$refcnt = $table−>get_references(’chainname’)
This returns the reference count for the chain chainname if it exists and is a user-defined chain. If
chainname does not exist, or is a built-in chain, −1 will be returned, and $! will be set to a string
containing the reason.

$is_chain = $table−>is_chain(’chainname’)
This checks to verify that the chain chainname exists in the current table. The method will return 1
if chainname is a chain, 0 if not.

@chains = $table−>list_chains()
This returns an array containing names of all existing chains in the table that $table points to.

$success = $table−>rename_chain(’oldname’, ’newname’)
This attempts to rename the chain oldname to newname.

$success = $table−>set_policy(’chainname’, ’target’)
$success = $table−>set_policy(’chainname’, ’target’, {pcnt => count, bcnt => count})

This attempts to set the default target for the chain chainname to target. It also allows the packet
and byte counters on a chain to be set using the (optional) third argument. Those values must be
passed as a hash ref, as shown.

Rule Operations

$success = $table−>append_entry(’chainname’, $hashref)
This attempts to append the rule described in the hash referenced by $hashref to the chain chain-
name.

$success = $table−>delete_entry(’chainname’, $hashref)
This attempts to delete a rule matching that described in the hash referenced by $hashref from the
chain chainname.

$success = $table−>delete_num_entry(’chainname’, $rulenum)
This attempts to delete the rule $rulenum from the chain chainname.

$success = $table−>flush_entries(’chainname’)
This deletes all rules from the chain chainname.

$success = $table−>insert_entry(’chainname’, $hashref, $rulenum)
This attempts to insert the rule described in the hash referenced by $hashref at index $rulenum in
the chain chainname.

@rules = $table−>list_rules(’chainname’)
This returns an array of hash references, which contain descriptions of each rule in the chain chain-
name.

Note that if the chain chainname does not exist, an empty list will be returned, as will listing an
empty chain. Be sure to verify that the chain exists before you try to list the rules.

$success = $table−>replace_entry(’chainname’, $hashref, $rulenum)
This attempts to replace the rule at index $rulenum in the chain chainname with the rule
described in the hash referenced by $hashref.

$success = $table−>zero_entries(’chainname’)
This zeroes all packet counters in the chain chainname.

perl v5.8.0 2002-11-26 2

IPv4(3) User Contributed Perl Documentation IPv4(3)

Cleanup

$success = $table−>commit()
This attempts to commit all changes made to the IP chains in the table that $table points to, and
closes the connection to the kernel-level netfilter subsystem.

RULE STRUCTURE
The rules in the libiptc interface are expressed as struct ipt_entrys. However, I hav e decided to
express the rules as hashes. The rules are passed around as hash references, and may contain the following
fields:

source
The source address of a packet. This will appear in one of the following forms:

ip.add.re.ss
ip.add.re.ss/maskwidth
ip.add.re.ss/ne.t.ma.sk

It may be prefixed with a ’!’, to indicate the inverse sense of the address (i.e., match anything EXCEPT
the address or address range specified).

destination
The destination address of a packet. It will appear in one of the same forms as source (see above).

in-interface
The network device which received the packet. Some chains cannot accept a rule with in−inter-
face set (such as the PREROUTING chain). This may show up as a full interface name (such as
eth0), or as a wildcarded interface name (such as eth+, where + is the wildcard character, which
can only be used at the end of a wildcarded interface string). It may be prefixed with a ’!’, to indicate
the inverse sense of the interface (i.e., match anything EXCEPT the interface specified).

out-interface
The network device that a packet will be sent out via. Some chains cannot accept a rule with
out−interface set (such as the INPUT chain). The format is the same as that for in−inter-
face (see above).

protocol
The name of the protocol of an incoming packet. It may be prefixed with a ’!’, to indicate the inverse
sense of the protocol (i.e., match anything EXCEPT this protocol).

fragment
An integer value. 1 indicates the rule should match only fragments, 0 indicates the rule should not
match any fragments. Don’t set this unless you really want to either match all or no fragments.

jump
The target or chain to jump to if the rule matches.

pcnt/bcnt
The number of packets and bytes that have matched this rule since the rule was put in place, or since
its counters were last zeroed.

matches
An array reference, containing a list of all the match modules which are to be used as part of the rule.

[target]−target−raw
This contains, as a string, the raw target data for a rule, if the needed module can’t be found. [target]
should be the name of the target. There will, of course, only be one of these per rule (as each rule can
only have one target).

[match]−match−raw
This contains, as a string, the raw match data for a rule, if the needed module can’t be found. [match]
should be the name of the match. There can be more than one of these in one rule. If a match is speci-
fied in matches, and no match module is available, raw data must be provided.

perl v5.8.0 2002-11-26 3

IPv4(3) User Contributed Perl Documentation IPv4(3)

MODULE-SPECIFIC RULE OPTIONS
Each module, for protocols, non-protocol matches, and non-standard targets, has specific keys associated
with specific options.

TCP protocol options

source-port
The port, or range of ports (separated by a colon), that a packet is expected to come from. It can be
passed as an integer, or a string. The ports may be designated by number, or by name, if the name is in
/etc/services. Its value can be prefixed with an ’!’ to denote inverted sense.

destination-port
The port, or range of ports (separated by a colon), that a packet is expected to go to. It can be passed as
an integer, or a string. The ports may be designated by number, or by name, if the name is in /etc/ser-
vices. Its value can be prefixed with an ’!’ to denote inverted sense.

tcp-flags
The TCP packet flags to mask for and to compare against. It is expressed as a hash reference, contain-
ing the following keys:

mask
The bits to AND the TCP flags with. This expresses the flags we care about. These are expressed
as an array reference, containing one or more of the TCP flag names (SYN, ACK, FIN, PSH, RST,
and ACK), or the special names ALL or NONE.

comp
The bits which must be set among those which are part of the mask. If a TCP flag is listed in the
mask, but not here, then it must be cleared. These are expressed as in the mask field.

inv Inv ert the sense of the TCP flag check. If this key exists in the hash, it will invert the sense of the
flag check − the value is not checked.

tcp-option
The TCP option number to check for. It can be passed as an integer, or a string. Its value can be pre-
fixed with an ’!’ to denote inverted sense.

UDP protocol options

source-port
The port, or range of ports (separated by a colon), that a packet is expected to come from. It can be
passed as an integer, or a string. The ports may be designated by number, or by name, if the name is in
/etc/services. Its value can be prefixed with an ’!’ to denote inverted sense.

destination-port
The port, or range of ports (separated by a colon), that a packet is expected to go to. It can be passed as
an integer, or a string. The ports may be designated by number, or by name, if the name is in /etc/ser-
vices. Its value can be prefixed with an ’!’ to denote inverted sense.

ICMP protocol options

icmp-type
The ICMP packet type to match. This can be passed as one of the named ICMP types, or in one of the
following forms:

typenum
typenum/codenum
typenum/codemin-codemax

The value can be prefixed with an ’!’ to denote inverse sense.

perl v5.8.0 2002-11-26 4

IPv4(3) User Contributed Perl Documentation IPv4(3)

dscp match options

This match will allow a rule to match the Differentiated Services code-point field in the IP headers of
incoming packets. Only one of the following options may be used in any one rule.

DSCP supplants TOS as a mechanism for indicating the type of service being provided by a packet stream.

dscp
Specify the numeric Differentiated Services value explicitly. The value may be prefixed with a ’!’ to
indicate inverse sense.

dscp-class
Specify a named Differentiated Services class. This can be one of BE, EF, CS0−CS7, AF11−AF13,
AF21−AF23, AF31−AF33, AF41−AF43. The value may be prefixed with a ’!’ to indicate inverse sense.

ipv4options match options

This match module allows a rule to match a packet based on certain IPv4 header flags. Only one of the
source-routing flags may be set on any one rule, and the any-opt flag will conflict with any of the other flags
if they are set in an opposing fashion.

ssrr Match packets with the strict source-routing flag set. The option’s presence enables it. Its value is
ignored.

lsrr Match packets with the loose source-routing flag set. The option’s presence enables it. Its value is
ignored.

no-srr
Match packets with no source-routing flags set. The option’s presence enables it. Its value is ignored.

rr Match packets with, or without, the record-route flag set. The value must be integer. A zero value
means match packets without the flag, a nonzero value means match packets with the flag.

ts Match packets with, or without, the timestamp flag set. The value must be integer. A zero value means
match packets without the flag, a nonzero value means match packets with the flag.

ra Match packets with, or without, the router-alert flag set. The value must be integer. A zero value
means match packets without the flag, a nonzero value means match packets with the flag.

any-opt
Match packets with any flag, or no flags, set. The value must be integer. A zero value means match
packets with no flags set, a nonzero values means match packets with any flag set.

length match options

The length match allows matching based on the payload size of a packet.

length
The packet length, or range of lengths, to match on. This value may be passed as an integer or a string.
To specify a range, specify the minimum value first, followed by the maximum, separated by a colon
(’:’) character. The value may be prefixed with a ’!’ to indicate inverse sense.

limit match options

The limit match module allows matching based on number of packets received over a period of time
(specified via the limit field).

limit
This field expresses the packet rate limit in terms of count per unit time. If no time unit is specified,
seconds are assumed. The time unit can be any of ’sec’ (or ’second’), ’min’ (or ’minute’), ’hour’ (or
’hr’), or ’day’. If unit time is to be specified, the limit should be specified as ’count/unit’, where
count is the number of packets to accept, and unit is one of the units specified above.

perl v5.8.0 2002-11-26 5

IPv4(3) User Contributed Perl Documentation IPv4(3)

limit-burst
This field indicates the initial number of packets to match. As packets are received, an internal counter
will be decremented. When it reaches zero, packets will no longer meet the match criteria. As time
passes at the rate specified in the limit field, the counter will be incremented up to this value.

mac match options

The mac match module allows matching based on the source MAC address of a received packet. This match
is only effective in the INPUT chain of the filter table, or the PREROUTING chain of the nat table, or
a user-created chain linked from either of those chains.

mac-source
This field expresses the hardware Ethernet address to compare against an incoming packet’s source
MAC address. It should be passed as a string containing six hex bytes separated by colons. It can be
prefixed with a ’!’ character, to indicate inverse sense.

mark match options

The mark match module allows matching based on a previously-set packet mark value, or specific bits in
the mark value (with a mask value).

mark
This field indicates what mark value, or what bits of a mark value, should be matched on. It may be
specified as a full value, or as a value with a mask (in value/mask form). The mask and value may be
in hex, decimal, or octal. This may be preceded by a ’!’ character, to indicate inverse sense. This field
is required when the mark match is used.

mport match options

The mport match allows a list of single ports and/or port ranges to be used as part of the matching criteria
for a rule. mport must be specified as part of the matches list, as documented above, to be used. Only
one of the fields listed below may be used in a rule. The value for the field must be a reference to an array,
containing port names, port numbers, or ranges consisting of a start and end, separated by a colon (’:’) char-
acter, specified as either port numbers or names (either may be used, mixing is allowed).

ports
This specifies ports to match as either the source or destination port of a packet.

source-ports
This specifies ports to match as source ports only.

destination-ports
This specifies ports to match as destination ports only.

multiport match options

The multiport match module allows a list of up to 15 individual ports to be specified as part of a rule.
multiport must be specified as part of the matches parameter, as documented above, in order to be
used. Only one of the following options to multiport may be used at once. The list of ports must be
passed as an array reference. The ports may be specified by name or by number. multiport will only
work as part of rules that match either TCP or UDP protocol.

ports
This specifies ports to match as either the source or destination port of a packet.

source-ports
This specifies ports to match as source ports only.

destination-ports
This specifies ports to match as destination ports only.

perl v5.8.0 2002-11-26 6

IPv4(3) User Contributed Perl Documentation IPv4(3)

owner match options

The owner match module allows packets (in the OUTPUT chain of the filter table only) to be matched
on which user, (primary) group, process ID or process group (session) ID is associated with them. owner
must be specified as part of the matches parameter, as documented above, in order to be used.

uid-owner
This specifies the UID to match on. The parameter may be either a UID number, or an actual username.
The parameter may be prefixed with a ’!’ to indicate inverse sense.

gid-owner
This specifies the GID to match on. The parameter may be either a GID number, or an actual group
name. The parameter may be prefixed with a ’!’ to indicate inverse sense.

pid-owner
This specifies the PID to match on. The parameter may be prefixed with a ’!’ to indicate inverse sense.

sid-owner
This specifies the SID (or process group ID) to match on. The parameter may be prefixed with a ’!’ to
indicate inverse sense.

state match options

The state match module allows stateful packet matching, using netfilter’s conntrack system to match
based on the state of a connection. state must be specified as part of the matches parameter, as docu-
mented above, in order to be used.

state
This specifies which connection states to match on. This parameter must be passed as an array refer-
ence, containing scalar elements, consisting of one or more of the keywords NEW, ESTABLISHED,
RELATED, and INVALID.

tcpmss match options

This specifies a range of TCP Maximum Send Size values which a rule should accept. This match only
applies to TCP packets.

mss
The Maximum Send Size value, or range of values, to match on. This value may be passed as an inte-
ger or a string. To specify a range, specify the minimum value first, followed by the maximum, sepa-
rated by a colon (’:’) character. The value may be prefixed with a ’!’ to indicate inverse sense.

tos match options

The tos match allows matching based on Type of Service flags. (Note that TOS is deprecated in preference
to DSCP.)

tos This specifies which Type of Service flag to match on. The Type of Service values include ’Nor-
mal−Service’ (1), ’Minimize−Cost’ (2), ’Maximize−Reliability’ (4), ’Maximize−Throughput’ (8), and
’Minimize−Delay’ (16). Only one of these may be used at a time. The TOS value may be specified as a
string or a number, and only these known TOS values will be accepted. This field is required when the
tos match is used.

ttl match options

The ttl match allows matching based on the TTL (Time to Live) values of packets. One of the fields listed
below is required, but only one may be used per rule.

ttl-eq
This field specifies an exact Time to Live value to match on. The value may be specified as a string or
a number. It may be prefixed with a ’!’ character to denote inverse sense (i.e., anything not equal to the
specified value).

perl v5.8.0 2002-11-26 7

IPv4(3) User Contributed Perl Documentation IPv4(3)

ttl-gt
This field specifies a minimum Time to Live value to match on, i.e., only values greater than the one
passed as part of this field, will be matched. The value may be specified as a string or a number.

ttl-lt
This field specifies a maximum Time to Live value to match on, i.e., only values less than the one
passed as part of this field, will be matched. The value may be specified as a string or a number.

unclean match options

The unclean match module matches packets which appear to be ill-formed or otherwise unusual, con-
taining unusual/undefined bits set, invalid flag combinations, and other invalid packet configurations. This
match has no option fields. It is still considered experimental. It is known in some older kernels to block
packets with ECN bits set. Use it with caution.

DNAT target options

The DNAT target allows an incoming connection to be redirected to a specific address, or one of a group of
addresses, and one or more ports. The only option to the DNAT target, described below, is required to indi-
cate where a connection is to be redirected to.

to-destination
This specifies the redirection address, or addresses, for the DNAT target. The addresses can be speci-
fied as a single IP address or a range, or no address with a port specification, or both. (You must have
at least one of the above.) One address or address range can be specified as a scalar string, or several
can be passed in an array reference (as scalar strings). They should be passed in one of the following
forms:

ad.d.re.ss
ad.d.re.ss-ad.d.re.ss
ad.d.re.ss:port
ad.d.re.ss:port-port
ad.d.re.ss-ad.d.re.ss:port
ad.d.re.ss-ad.d.re.ss:port-port
:port
:port-port

DSCP target options

This target will allow a rule to apply a Differentiated Services code-point value to the IP headers of outgo-
ing packets. Only one of the following options may be used in any one rule. This target may only be used in
the mangle table.

DSCP supplants TOS as a mechanism for indicating the type of service being provided by a packet stream.

set-dscp
Specify the numeric Differentiated Services value explicitly.

set-dscp-class
Specify a named Differentiated Services class. This can be one of BE, EF, CS0−CS7, AF11−AF13,
AF21−AF23, AF31−AF33, AF41−AF43.

FTOS target options

The FTOS target sets the Type of Service field in a packet. Unlike the TOS target, it allows setting an arbi-
trary value. This value is often used by modern routing hardware to decide how packets should be routed,
depending on the needs described by the TOS value. This target is only valid in the mangle table. The
set−ftos field, described below, is required when this target is used.

perl v5.8.0 2002-11-26 8

IPv4(3) User Contributed Perl Documentation IPv4(3)

set-ftos
This field specifies the Type-of-Service value to be set. The value must be non−negative, and no
greater than 255.

LOG target options

The LOG target uses the kernel logger (klogd) to log a message regarding the presence of a packet match-
ing the conditions of the rule. Certain options may be passed to modify the behavior of the LOG target.

log-level
This specifies the logging level, or priority, of the message which the rule should emit when matched.
The value can be numeric, or can be a log level name, which is any of alert, crit, debug,
emerg, error (deprecated), info, notice, panic (a synonym for emerg, deprecated), or
warning.

log-prefix
This specifies a prefix string, which will be added to the beginning of the log entry, and can be used as
an identifier.

log-tcp-sequence
The presence of this flag indicates that the TCP sequence number of the received packet (if it is a TCP
packet) will be appended to the log entry. Note that logging the sequence numbers could be a security
hazard. Don’t say you weren’t warned. The value associated with the key is not checked.

log-tcp-options
The presence of this flag indicates that any TCP option bits specified in the TCP packet header (if it is a
TCP packet) will be appended to the log entry. The value associated with the key is not checked.

log-ip-options
The presence of this flag indicates that any IP option bits specified in the IP packet header will be
appended to the log entry. The value associated with the key is not checked.

MARK target options

The MARK target may be used to set a mark value on a packet. This is commonly used as a way to tag pack-
ets for policy-routing later (use iproute2 for this). This target is only valid for use in the mangle table.

set-mark
This option specifies the value to mark the packet with. This field is required for the MARK target.

MASQUERADE target options

The MASQUERADE target causes packets to be rewritten before being sent to appear to be destined from the
interface they are being routed via. This target is only valid in the nat table, in the POSTROUTING chain,
or in a user-created chain in the nat table (only has an effect if it is linked to from the POSTROUTING
chain).

to-ports
This option specifies the port or port range to indicate as the packet’s source port. If a range is used,
the first port in the range will be tried, and if it is unavailable, successive ports will be tried through the
last in the range. (If it can’t be forwarded because of not having an available port, the packet will be
thrown out.) Normally, the MASQUERADE target will try to map to the same port as the packet came
from on the originating host whenever possible.

MIRROR target options

The MIRROR target causes a received packet to be directed back to the sending host immediately. This tar-
get has no options. It is considered experimental, and generally for testing purposes only. You could really
piss some people off with this, so if you choose to use it, use it with caution, and don’t say you weren’t
warned.

perl v5.8.0 2002-11-26 9

IPv4(3) User Contributed Perl Documentation IPv4(3)

REDIRECT target options

The REDIRECT target causes incoming packets to be redirected to the address of the interface they just
arrived on. This target is only valid in the nat table, in the PREROUTING chain, or in a user-created chain
in the nat table (only has an effect if it is linked to from the PREROUTING chain).

to-ports
This option specifies the port or port range to redirect the packet to. If a range is used, the first port in
the range will be tried, and if it is unavailable, successive ports will be tried through the last in the
range. (If it can’t be redirected because of not having an available port, the packet will be thrown out.)
Normally, the REDIRECT target will redirect the connection to the same port which it was destined for.

REJECT target options

The REJECT target allows incoming packets to be rejected, with an appropriate reply packet, instead of just
ignoring them (as with the DROP built-in target).

reject-with
This specifies a type of reply to send back as a rejection notice when the rule is matched. The sup-
ported types are icmp−net−unreachable (or net−unreach for short),
icmp−host−unreachable (or host−unreach), icmp−port−unreachable (or
port−unreach), icmp−proto−unreachable (or proto−unreach), icmp−net−prohib-
ited (or net−prohib), icmp−host−prohibited (or host−prohib), and tcp−reset
(only valid for rules which specifically match TCP packets).

SNAT target options

The SNAT target allows an incoming connection to be rewritten to appear to be from a different address.
This target has only one option, described below, which is required to tell the SNAT target where the con-
nections should be rewritten to appear to be from.

to-source
This specifies the rewriting address, or addresses, for the SNAT target. The addresses can be specified
as a single IP address or a range, or no address with a port specification, or both. (You must have at
least one of the above.) One address or address range can be specified as a scalar string, or several can
be passed in an array reference (as scalar strings). The address specification style is as described for
the DNAT target’s to−destination field, and can be seen above.

TCPMSS target options

The TCPMSS target allows limiting of the TCP Maximum Send Size value. This can be particularly useful
for firewalls and NAT systems, particularly in cases where the MTU/MSS values differ between the con-
nected networks. Only one of the fields below may be passed. This target is only valid in the mangle table.
It is only allowed for TCP SYN packets.

set-mss
This field explicitly specifies the Maximum Send Size value.

clamp-mss-to-pmtu
This field instructs the TCPMSS target to lock the TCP Maximum Send Size value down to the Path
MTU, generally determined via path MTU discovery. The path MTU is a value which indicates the
largest packet which can travel unfragmented from source to destination. The TCP packet itself will
actually be 40 bytes less than the path MTU value (due to IP and TCP headers). The presence of this
field indicates the option is to be enabled. The value format does not matter, as the value will be
ignored.

perl v5.8.0 2002-11-26 10

IPv4(3) User Contributed Perl Documentation IPv4(3)

TOS target options

The TOS target sets the Type of Service bits in a packet. These bits are often used by modern routing hard-
ware to decide how packets should be routed, depending on the needs described by the TOS bits. This target
is only valid in the mangle table. (Note that TOS is deprecated in preference to DSCP.)

set-tos
This field specifies the Type of Service flag which should be set. The Type of Service values include
’Normal−Service’ (1), ’Minimize−Cost’ (2), ’Maximize−Reliability’ (4), ’Maximize−Throughput’ (8),
and ’Minimize−Delay’ (16). Only one of these may be used at a time. The TOS value may be specified
as a string or a number, and only these known TOS values will be accepted. This field is required
when the TOS target is used.

TTL target options

The TTL target allows the time-to-live value embedded in an IP packet’s header to be modified. Only one of
the fields specified below may be used per rule. The value should be passed as a non-negative integer, no
greater than 255. This target is only valid in the mangle table.

ttl-set
Set the matched packet’s TTL value to a specific value.

ttl-inc
Increment the matched packet’s TTL value by a specified amount. The amount cannot be zero.

ttl-dec
Decrement the matched packet’s TTL value by a specified amount. The amount cannot be zero. If the
new TTL value is less than or equal to 0, a ’time−exceeded’ reply will be sent back to the originating
address.

ULOG target options

The ULOG target allows flexible, almost universal userspace logging. The ULOG target must be patched
into your kernel and you need the ulogd daemon to use the userspace logging. More about ULOG can be
found at the site of the ULOG author Harald Welte (http://www.gnumonks.org/ftp/pub/netfilter).

ulog-prefix
This specifies a prefix string, which will be added to the beginning of the log entry, and can be used as
an identifier.

ulog-nlgroup
The netlink multicast group, which ulogd should bind to.

ulog-copy-range
The amount of bytes copied for each packet to the userspace. Has to be in the range 0−1500 (0 means
the whole package).

ulog-qthreshold
The amount of packets batched together into one multipart netlink message. This reduces the number
of context switches between kernel and userspace. Has to be in the range between 1 and 50.

AUTHOR
Derrik Pates, dpates@dsdk12.net

SEE ALSO
iptables (8).

perl v5.8.0 2002-11-26 11

